Main Article Content

Abstract

Burst type fracture is commonly involved in the thoracolumbar spine, causing a spinal cord injury (SCI). This case represents a 17-year-old female patient presents with a complaint of cannot move both legs and experience a shearing-like pain in the low back. Five days prior, she falls from a 4-meter height abyss, and after that, she cannot move both legs. On the physical examination, both lower extremities muscles are paralyzed, decreased in pain and temperature sensation in both lower extremities, preserved sacral function, and the neurological level of injury (NLI) is located on the L1 vertebra. The American Spinal Injury Association (ASIA) impairment scale is C. The plain X-ray and computed tomography (CT) scan of the thoracolumbar spine show compression of the L1 vertebra and narrowing of the spinal canal caused by retropulsion bone fragment. We treated the patient with laminectomy decompression and posterior stabilization with pedicle screw and rod instrumentation, which is done without the use of a C-arm and performed with a free-hand technique using the anatomical landmark. No complication found with this procedure. After periodically follow up, the neurological examination, either the motoric and sensory function, is improved.

Keywords

burst fracture, laminectomy decompression, posterior stabilization, spinal cord injury

Article Details

How to Cite
Lauren, C., Suranta, S. E., Malelak, E. B., & Argie, D. (2020). Posterior surgical approach and stabilization procedure with “free-hand” technique in a 17-year-old patient with burst type fracture of the L1 vertebra and incomplete spinal cord injury (ASIA Impairment Scale C). Neurologico Spinale Medico Chirurgico, 3(2), 55-60. https://doi.org/10.36444/nsmc.v3i2.112

References

  1. Heary R, Kumar S. Decision-making in burst fractures of the thoracolumbar and lumbar spine. Indian J Orthop. 2007; 41(4): 268-76. doi:10.4103/0019-5413.36986
  2. Rajasekaran S. Thoracolumbar burst fractures without neurological deficit: The role for conservative treatment. Eur Spine J. 2010; 19 Suppl 1(Suppl 1): S40-7. doi:10.1007/s00586-009-1122-6
  3. Bensch F V, Koivikko MP, Kiuru MJ, et al. The incidence and distribution of burst fractures. Emerg Radiol. 2006; 12(3): 124-9. doi:10.1007/s0010140-005-0457-5
  4. Mohanty SP, Bhat NS, Abraham R, et al. Neurological deficit and canal compromise in thoracolumbar and lumbar burst fractures. J Orthop Surg (Hong Kong). 2008; 16(1): 20-3. doi:10.1177/230949900801600105
  5. Greenberg MS. Handbook of Neurosurgery. Ninth Edition. New york, Thieme, 2019
  6. Xu GJ, Li ZJ, Ma JX, et al. Anterior versus posterior approach for treatment of thoracolumbar burst fractures: A meta-analysis. Eur Spine J. 2013; 22(10): 2176-83. doi:10.1007/s00586-013-2987-y
  7. Wu H, Wang C xin, Gu C yue, et al. Comparison of three different surgical approaches for treatment of thoracolumbar burst fracture. Chin J Traumatol. 2013; 16(1): 31-5. doi:10.3760/cma.j.issn.1008-1275.2013.01.006
  8. Shin JK, Goh TS, et al. Treatment of Thoracolumbar and Lumbar Unstable Burst Fractures by Using Combined and Posterior Surgery. J Trauma Inj. 2016; 29(1): 14-21. doi:10.20408/jti.2016.29.1.14
  9. Mayer M, Ortmaier R, Koller H, et al. Impact of Sagittal Balance on Clinical Outcomes in Surgically Treated T12 and L1 Burst Fractures: Analysis of Long-Term Outcomes after Posterior-Only and Combined Posteroanterior Treatment. Biomed Res Int. 2017; 2017:1568258. doi:10.1155/2017/1568258
  10. Oprel PP, Tuinebreijer WE, Patka P, et al. Combined Anterior-Posterior Surgery Versus Posterior Surgery for Thoracolumbar Burst Fractures: A Systematic Review of the Literature. Open Orthop J. 2010; 4: 93-100. doi:10.2174/1874325001004010093
  11. Rajasekaran S, Kanna RM, Shetty AP. Management of thoracolumbar spine trauma An overview. Indian J Orthop. 2015; 49(1): 72-82. doi:10.4103/0019-5413.143914
  12. Kim MS, Eun JP, Park JS. Radiological and clinical results of laminectomy and posterior stabilization for severe thoracolumbar burst fracture: Surgical technique for one-stage operation. J Korean Neurosurg Soc. 2011; 50(3): 224-30. doi:10.3340/jkns.2011.50.3.224
  13. Choo CH, Kwan MK, Chan YWC. Surgical reduction technique (transpedicle) for unstable thoracolumbar burst fractures with retropulsion resulting in severe spinal canal stenosis: a preliminary case report. AME Case Rep. 2018; 2: 38. doi:10.21037/acr.2018.07.02
  14. Zhang ZF. Freehand Pedicle Screw Placement Using a Universal Entry Point and Sagittal and Axial Trajectory for All Subaxial Cervical, Thoracic and Lumbosacral Spines. Orthop Surg. 2020; 12(1): 141-152. doi:10.1111/os.12599
  15. Lee CH, Hyun SJ, Kim YJ, et al. Accuracy of free hand pedicle screw installation in the thoracic and lumbar spine by a young surgeon: An analysis of the first consecutive 306 screws using computed tomography. Asian Spine J. 2014; 8(3): 237-43. doi:10.4184/asj.2014.8.3.237
  16. Hyun SJ, Kim YJ, Cheh G, et al. Free hand pedicle screw placement in the thoracic spine without any radiographic guidance: Technical note, a cadaveric study. J Korean Neurosurg Soc. 2012; 51(1): 66-70. doi:10.3340/jkns.2012.51.1.66
  17. Vijayeswaran N, Venkatesh R, Murugesan G, et al. Is freehand technique of pedicle screw insertion in thoracolumbar spine safe and accurate? Assessment of 250 screws. J Neurosci Rural Pract. 2019; 10(2): 256-260. doi:10.4103/jnrp.jnrp_183_18
  18. Oh CH, Yoon SH, Kim YJ, et al. Technical Report of Free Hand Pedicle Screw Placement using the Entry Points with Junction of Proximal Edge of Transverse Process and Lamina in Lumbar Spine: Analysis of 2601 Consecutive Screws. Korean J Spine. 2013; 10(1): 7-13. doi:10.14245/kjs.2013.10.1.7
  19. Karapinar L, Erel N, Ozturk H, et al. Pedicle screw placement with a free hand technique in thoracolumbar spine: Is it safe? J Spinal Disord Tech. 2008; 29(3): 333-42. doi:10.1097/BSD.0b013e3181453dc6
  20. Mattei TA, Meneses MS, Milano JB, et al. “Free-hand” technique for thoracolumbar pedicle screw instrumentation: Critical appraisal of current “state-of-Art.” Neurol India. 2009; 57(6): 715-21. doi:10.4103/0028-3886.59465
  21. De Marco FA, Risso-Neto MI, Cavali PTM, et al. Placement analysis of thoracic and lumbar pedicle screws inserted under anatomic and radioscopic parameters. Coluna/ Columna. 2008; 7(1): 1-7.
  22. Schönherr MC, Groothoff JW, Mulder GA, et al. Functional outcome of patients with spinal cord injury: Rehabilitation outcome study. Clin Rehabil. 1999; 13(6): 457-63. doi:10.1191/026921599666105472
  23. Milicevic S, Piscevic V, Bukumiric Z, et al. Analysis of the factors influencing functional outcomes in patients with spinal cord injury. J Phys Ther Sci. 2014; 26(1): 67-71. doi:10.1589/jpts.26.67
  24. Mazwi NL, Adeletti K, Hirschberg RE. Traumatic Spinal Cord Injury: Recovery, Rehabilitation, and Prognosis. Curr Trauma Reports. 2015; 1: 182-192. doi:10.1007/s40719-015-0023-x
  25. Franceschini M, Bazo HC, Lauretani F, et al. Age influences rehabilitative outcomes in patients with spinal cord injury (SCI). Aging Clin Exp Res. 2011; 23(3): 202-8. doi:10.1007/BF03324961