Main Article Content

Abstract

Background: Oxidative stress plays a role in the obesity mechanism, thus leads to premature aging. High antioxidant capacity in Bajakah tampala stem may effectively lessen oxidative stress and reduce fat mass and body weight accordingly. This study aimed to provide Bajakah tampala stem extract's effect in lowering ROS level, visceral fat weight, and overall weight of obese male Wistar rats.


Method: A true experimental design was conducted on male Wistar rats aged 2-3 months with obesity. Thirty-two obese rats were evenly divided into a placebo group and a group given Bajakah tampala stem extract, with 16 rats in each group. For 28 days, both groups were fed a high-fat diet. The subject body weights were weighed every week. ROS levels and visceral fat weight were evaluated after the intervention was done. Comparative analysis between groups was performed.


Results: The results showed mean levels of ROS (56.2 ± 7.4 U/ml vs. 400.9 ± 50.7 U/ml; p < 0.001), visceral fat weight (2.6 ± 0.2 g vs. 3.4 ± 0.9 g; p < 0.001), and the final body weight (241.5 ± 2.8 g vs. 261.5 ± 13.8 g; p < 0.001) were significantly lower in the study group than the control group.


Conclusion: The study indicates Bajakah tampala stem extract administration effectively reduced ROS levels, visceral fat weight, and body weight in obese male Wistar rats.

Keywords

Bajakah tampala Reactive oxygen species Visceral fat weight Body weight Obesity

Article Details

How to Cite
Novanty, V., Pangkahila, W., & Dewi, N. N. A. (2021). Administration of ethanol extract of Bajakah tampala (Spatholobus littoralis Hassk) stem decreased reactive oxygen species, visceral fat and body weight of obese rats. Neurologico Spinale Medico Chirurgico, 4(1), 32-36. https://doi.org/10.36444/nsmc.v4i1.150

References

  1. Fernández-Sánchez A, Madrigal-Santillán E, Bautista M, et al. Inflammation, oxidative stress, and obesity. International journal of molecular sciences. 2011;12(5):3117–3132. DOI: 10.3390/ijms12053117
  2. Lee JS, Kim K-J, Kim Y-H, et al. Codonopsis lanceolata extract prevents diet-induced obesity in C57BL/6 mice. Nutrients. 2014;6(11):4663–4677. DOI: 10.3390/nu6114663
  3. Sugianti E, Afriansyah N. Faktor risiko obesitas sentral pada orang dewasa di DKI Jakarta: Analisis lanjut data Riskesdas 2007. Gizi Indonesia. 2009;32(2):105-116. DOI: 10.36457/gizindo.v32i2.73
  4. Matsuda M, Shimomura I. Roles of adiponectin and oxidative stress in obesity-associated metabolic and cardiovascular diseases. Reviews In Endocrine And Metabolic Disorders. 2014;15(1):1–10. DOI: 10.1007/s11154-013-9271-7
  5. Egedigwe CA, Ejike CE, Ijeh II, et al. Anti-obesity potentials of aqueous and methanol extracts of Vernonia amygdalina Del. leaves in high-fat diet fed rats. African Journal of Traditional, Complementary and Alternative Medicines. 2016;13(2):86–93.
  6. Saputera MMA, Ayuchecaria N. Uji efektivitas ekstrak etanolik batang Bajakah tampala (Spatholobus Littoralis Hassk.) terhadap waktu penyembuhan luka. Jurnal Ilmiah Ibnu Sina. 2018;3(2):318–327. DOI: 10.36387/jiis.v3i2.185
  7. Nagesh PK, Chowdhury P, Hatami E, et al. Tannic acid inhibits lipid metabolism and induce ROS in prostate cancer cells. Scientific reports. 2020;10(1):980. DOI: 10.1038/s41598-020-57932-9
  8. Rohyami Y. Penentuan kandungan flavonoid dari ekstrak metanol daging buah mahkota dewa (Phaleria macrocarpa Scheff Boerl). Jurnal Logika. 2008;5(1):1-16.
  9. Dzomba P, Musekiwa C. Anti-obesity and antioxidant activity of dietary flavonoids from Dioscorea steriscus tubers. 2014;2(6):465-470. DOI: 10.12980/JCLM.2.201414B8
  10. Ahn JH, Liu Q, Lee C, et al. A new pancreatic lipase inhibitor from Broussonetia kanzinoki. Bioorganic & medicinal chemistry letters. 2012;22(8):2760–2763. DOI: 10.1016/j.bmcl.2012.02.088
  11. Pourreza N. Phenolic compounds as potential antioxidant. Jundishapur Journal of Natural Pharmaceutical Products. 2013;8(4):149-150. DOI: 10.17795/jjnpp-15380
  12. Tavsan Z, Kayali HA. Flavonoids showed anticancer effects on the ovarian cancer cells: Involvement of reactive oxygen species, apoptosis, cell cycle and invasion. Biomedicine & pharmacotherapy. 2019;116:109004. DOI: 10.1016/j.biopha.2019.109004
  13. Huang D, Jiang Y, Chen W, et al. Evaluation of hypoglycemic effects of polyphenols and extracts from Penthorum chinense. Journal of Ethnopharmacology. 2015;163:256–263. DOI: 10.1016/j.jep.2015.01.014
  14. Larrañaga A, Isa ILM, Patil V, et al. Antioxidant functionalized polymer capsules to prevent oxidative stress. Acta biomaterialia. 2018;67:21–31. DOI: 10.1016/j.actobio.2017.12.014
  15. Kim TY, Leem E, Lee JM, Kim SR. Control of reactive oxygen species for the prevention of Parkinson’s disease: The possible application of flavonoids. Antioxidants. 2020;9(7): 583. DOI: 10.3390/antiox9070583
  16. Tian YF, Chang WC, Loh CH, et al. Leptin-mediated inflammatory signaling crucially links visceral fat inflammation to obesity-associated β-cell dysfunction. Life sciences. 2014;116(1): 51–58. DOI: 10.1016.j.lfs.2014.07.039
  17. Elgazar-Carmon V, Rudich A, Hadad N, et al. Neutrophils transiently infiltrate intra-abdominal fat early in the course of high-fat feeding. Journal of lipid research. 2008;49(9): 1894–1903. DOI: 10.1194/jlr.M800132-JLR200
  18. Fontana L, Eagon JC, Trujillo ME, et al. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes. 2007;56(4):1010–1013. DOI: 10.2337/db06-1656
  19. Item F, Konrad D. Visceral fat and metabolic inflammation: The portal theory revisited. Obesity Reviews. 2012;13(2):30–39. DOI: 10.1111/j.1467-789X.2012.01035.x
  20. Koster A, Stenholm S, Alley DE, et al. Body fat distribution and inflammation among obese older adults with and without metabolic syndrome. Obesity (Silver Spring). 2010;18(12):2354–2361. DOI: 10.1038/oby.2010.86
  21. Marranzano M, Ray S, Godos J, et al. Association between dietary flavonoids intake and obesity in a cohort of adults living in the Mediterranean area. International journal of food sciences and nutrition. 2018;69(8):1020–1029. DOI: 10.1080/09637486.2018.1452900
  22. Hossain MK, Dayem AA, Han J, et al. Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids. International journal of molecular sciences. 2016;17(4): 569. DOI: 10.3390/ijms17040569
  23. Bjørklund G, Chirumbolo S. Role of oxidative stress and antioxidants in daily nutrition and human health. Nutrition. 2017;33:311–321. DOI: 10.1016/J.nut.2016.07.018
  24. Rupasinghe HV, Sekhon-Loodu S, Mantso T, et al. Phytochemicals in regulating fatty acid β-oxidation: Potential underlying mechanisms and their involvement in obesity and weight loss. Pharmacology & therapeutics. 2016;165:153–163. DOI: 10.1016/j.pharmthera.2016.06.005
  25. Chater PI, Wilcox MD, Houghton D, et al. The role of seaweed bioactives in the control of digestion: Implications for obesity treatments. Food Funct. 2015;6(11):3420–3427. DOI: 10.1039/c5fo00293a
  26. Song D, Cheng L, Zhang X, Wu Z, Zheng X. The modulatory effect and the mechanism of flavonoids on obesity. Journal of food biochemistry. 2019;43(8):e12954. DOI: 10.1111/jfbc.12954